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Abstract—Current studies on software development either
focus on the change history of source code from version-control
systems or on an analysis of simplistic in-IDE events without
context information. Each of these approaches contains valuable
information that is unavailable in the other case. Our work
proposes enriched event streams, a solution that combines the
best of both worlds and provides a holistic view on the software
development process. Enriched event streams not only capture
developer activities in the IDE, but also specialized context
information, such as source-code snapshots for change events.
To enable the storage of such code snapshots in an analyzable
format, we introduce a new intermediate representation called
Simplified Syntax Trees (SSTs) and build C A RET, a platform that
offers reusable components to conveniently work with enriched
event streams. We implement FEEDBAG++, an instrumentation for
Visual Studio that collects enriched event streams with code
snapshots in the form of SSTs. We share a dataset of enriched
event streams captured from 58 users and representing 915 days
of work. Additionally, to demonstrate usefulness, we present three
research applications that have already made use of C A RET and
FEEDBAG++.

I. INTRODUCTION

To assist developers in their everyday work, an understanding
of developers’ activities is necessary, especially how they
develop source code. Ideally, this can be done by observing
developers in their actual work environment. Several researchers
have conducted such observation studies to, for example,
assess developer productivity [35], evaluate the user interface
of particular tools [43], or study software evolution [11].
Unfortunately, conducting such experiments is very expensive
and researchers typically resort to other alternatives.

Two popular alternatives are studying historic development
information after the fact through the artifacts that are created
during the development process (e.g., source code files) and
analyzing developer interaction data that was automatically
captured while using an Integrated Development Environment
(IDE). Examples of the former include using historic data
to help developers with change summarization [44], bug
localization [10], deriving related files based on their co-
change probability [67], and predicting change locations [71].
Examples of the latter include analyzing developer interaction
data to recommend artifacts related to the developer’s current
activities [26], improving developers’ productivity [27], and
understanding how developers spend their time [39]. We argue
that considering historic data and in-IDE interaction data
separately misses out on the bigger picture that is necessary
to gain a complete understanding of software development.

Analyzing changes committed to public version-control
systems (VCS) is the most common way of analyzing software
artifacts after the fact (i.e., historic information) and is an impor-
tant topic in the area of mining software repositories [20]. Some
of the approaches in this area work on the level of changed
lines [54], others are based on syntactic information [10], and
some need fully-resolved types in the sources [71], meaning
that the code has to be compilable first. With the rising
number of open-source projects hosted on platforms such as
GitHub or SourceForge, such data has become easily accessible.
However, only looking at the artifacts developers create has
the inherent problem that any conclusions drawn are affected
by the granularity of the collected artifacts. Many intermediate
modifications that are subsequently reverted or again modified
will not be observed in such data. A previous study by Negara
et al. [46] shows that the history from VCS is not representative
of the actual code evolution.

To overcome some of the disadvantages of using VCS data,
some researchers refine the granularity of the snapshots by auto-
committing intermediate code versions from the IDE to a VCS
whenever the developer makes a change in the editor [46], [59]
or saves a file [62]. This approach creates a very fine-grained
history of commits, which allows a closer inspection of the
steps taken by the developer. Finer-grained information provides
more insights about how developers write code, enabling us
to produce better tools to support them. However, source
code snapshots leave behind other relevant information that
is available in the developer’s IDE. One example is resolved
type information, which is important for any static analysis
on the snapshots. While it is usually available in the IDE,
it can only be reconstructed from a captured code snapshot
by compiling the snapshot. This is typically a hard task, as
dependencies might be unavailable or compilation might rely
on a project-specific environment. Another example is the edit
location of the developer, which is known in the IDE, but can
only be approximated from a historic change set. The more
files involved and the more coarse-grained the history is, the
fuzzier this approximation becomes.

Capturing only source code snapshots also leaves behind
any information about the development process. The snapshots
themselves do not explain how the current piece of code
was developed, which might include usages of refactoring
tools or code-completion engines. Previous work recovers this
information using heuristics [16], [21], but it cannot generally
be reconstructed precisely.



Lack of context may lead to missing or incomplete conclu-
sions when studying developers and the code they produce.
We argue that capturing richer and more detailed context
information is needed to facilitate the reasoning about captured
code snapshots and to get more insights into the development
process. Previous studies have tracked developers’ activities
within an IDE to capture information about the development
process, usually in the form of an event stream (e.g., [3],
[26], [39], [60]). However, most of these studies only record
command invocations without specific details about them (e.g.,
they capture that a specific refactoring was invoked, but not to
which part of the code it was applied). This makes it hard to
interpret the event stream and to align it with source code
changes. To the best of our knowledge, only few studies
combine the analysis of fine-grained source code evolution
with in-IDE process and tool information (e.g., [6], [11], [62]).

In this paper, we propose an approach to create development
artifacts that combine process information with source changes.
We capture an enriched event stream of development activities
in the IDE that stores not only simple information about
executed commands, but also context information to enrich the
usefulness of these events. This provides a holistic picture of
the developer’s work and makes it possible, even after the fact,
to answer questions that touch both source-code changes and
information about the development process, e.g., “Which files
or method implementations did the developer look at while
working with a specific API?”, “What is the effect of using
various history granularity levels when analyzing developer
behavior, e.g., time-based, commit-based, or activity-based
intervals?”, or “Which parts of the code get changed after a
failing test?”

To realize our proposed approach, this paper makes the
following main contributions:
● Enriched event streams, a representation of the in-IDE

development process that is enriched with specialized context
information.

● Simplified Syntax Trees (SSTs), an intermediate representa-
tion for source code catered to capture in-IDE code snapshots.

● FEEDBAG++, a general and extensible interaction tracker that
captures enriched event streams in VISUAL STUDIO.

● C A RET, a platform that provides tooling around enriched
event streams and SSTs.

● A dataset of enriched event streams collected from 58
developers.

All tools, documentation, examples, and the dataset can be
found on our artifact page [4].

II. OVERVIEW

In this paper, we introduce C A RET, a platform that enables
researchers to work with a fine-grained change history and
connect it to the development process. Figure 1 shows an
overview of our infrastructure, including the tools C A RET

and FEEDBAG++ and the data structures we built to enable this
connection. We now briefly explain the figure and use it as an
outline to explain the structure of the paper.
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Figure 4: Tools for Simplified Syntax Trees

our own plugin2 to capture the source code under edit from
VISUAL STUDIO’s editor. Since source code in an editor may be
non-compilable, the transformation is resilient against missing
statements or incorrect expressions. It processes all information
that ReSharper’s parser is able to retrieve from the code.

The transformation is influenced by two design decisions:
● Simplify the representation.
● Unify over alternative styles of writing.

We implemented several transformation steps to follow these
principles. The transformation simplifies nested expressions
that are more complex than literals or reference expressions by
creating artificial intermediate variables to which the formerly
nested expressions are assigned. The transformation removes
syntactic sugar from the source code and replaces it with the de-
sugared variant. For example, C# allows to initialize properties
directly as part of a constructor call. Our transformation reduces
this initialization construct to a constructor call and assignments.
White space is also ignored by design, as it is not part of the
SST definition. As a last step, our transformation makes all
implicit information explicit.

An example of our transformation is provided in Figure 3.
Figure 3a shows a piece of C# code and Figure 3b shows
the corresponding SST. The latter makes implicit information
visible. For example, the var keyword on Line 7 of the original
code is replaced by a type reference in the SST and all this
references are explicitly named. Furthermore, the SST unifies
over alternative styles of writing. For example, the nested and
chained calls in Line 6 of the original source code are assigned
to intermediate variables in Lines 4 to 6 in the SST.

D. C A RET’s SST Tools

As part of C A RET, we offer various reusable components to
enable other researchers and toolsmiths to easily work with
SSTs and to perform various transformations on top of it.
Figure 4 shows these tools. These include tooling, implemented
in TODO: both C# and Java. that transforms C# source code
to SSTs, as well as several reusable components, implemented
in Java that can be used for the SST analysis and manipulation.
We now describe these reusable components.

1) Visitor: SSTs implement the visitor pattern [11]. The
goal of the pattern is to separate an algorithm from the data
structure on which it operates. This means that new static
analyses can be implemented on top of SSTs without altering
the data structure. The visitor pattern also makes traversing
the SST tree structure very convenient.

2https://resharper-plugins.jetbrains.com/packages/KaVE.Project/, October 17, 2016

2) Inlining: It is a common guideline and a good coding
practice to keep method bodies short and to identify coherent
building blocks that can be outsourced to a helper function [21].
Unfortunately, from the point of view of a researcher that tries
to identify related method calls, this makes it harder to write a
static analysis. We provide an inlining component that inlines
calls to private helper methods (non-entrypoints) into the calling
method; only the entry points of an SST remain in the end.
This allows to restrict a static analysis to an intra-procedural
scope, but still get some benefits of inter-procedural analysis.

3) Points-to Analysis: When studying source code, it is
often the case that a researcher is interested in the objects that
are referenced or addressed in a specific statement. We provide
points-to analyses for SSTs that can be used to identify the
abstract location to which variable references point to during
the execution of a program. We have four implementations: two
simple implementations that are based on types or reference
names, a Steensgard-style unification analysis [37], and an
implementation that is based on constraint inclusion [33].

4) Loop Normalization: Many code elements can be used
to express a loop in a program, e.g., while, for, foreach
etc. Depending on their preference or knowledge of the pro-
gramming language, different developers might select different
loop constructs when implementing the same piece of code.
This makes it harder to find patterns in the resulting code,
because the code structure is less similar. We provide a reusable
component that normalizes all loop constructs into a while
loop, with the goal of unifying source code of different people.

V. REAL APPLICATIONS OF FEEDBAG++ AND C A RET

It is hard to evaluate a platform or a data structure. Instead,
we decided to show the usefulness and the applicability of the
platform by presenting applications in our own research and
inspiring other researchers on possible uses. In the following,
we will present how we used FEEDBAG++ to gather a reference
dataset and how we have used C A RET in our own research.
We see potential to use platform in many applications, but we
decided to focus on the data collection and the description of
three applications. We preferred to introduce examples with
some depth, instead of including many examples with a shallow
explanation.

A. Collecting In-IDE Development Events
TODO: Integrate:

In the early phases of developing FEEDBAG [2], we collab-
orated with a company that has to remain undisclosed. We
had the opportunity to track multiple developers over several
months, who also provided valuable feedback about their
experience in using FEEDBAG. In the process, we also gained
experience in interpreting the captured event stream [3]. All
these parts led to the development of FEEDBAG++. We improved
the interaction tracking, added more general events, and also
started to capture specific contexts. To make use of C A RET,
it is necessary to first capture data that can be analyzed.
We published FEEDBAG++ in the official plugin repository of
RESHARPER.2 We had our students install it while developing
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Figure 1: Overview of our Infrastructure

The top-left corner of Figure 1 shows FEEDBAG++, our
interaction tracker for VISUAL STUDIO. FEEDBAG++ captures all the
actions developers perform in the IDE. It then generates an
enriched event stream that not only captures which events take
place in the IDE, but also stores relevant context information
about them. Once an enriched event stream is captured, it can
be processed using C A RET’s Event Stream Processor. C A RET

is the tooling we built to work with our new representation of
enriched event streams. The abbreviation stands for Composable
Analyses and REusable Transformations. The event stream
processor allows reading the detailed information of each event.
Section III introduces enriched event streams, the individual
event types we capture, and our tool, FEEDBAG++, which we use
to capture them from within VISUAL STUDIO.

One particular event we capture is a change event, which
we enrich with a snapshot of the source code under edit. We
store these snapshots in the form of Simplified Syntax Trees, an
intermediate representation (IR) we developed for this purpose.
Thus, as shown in the bottom left of Figure 1, an event in
the enriched event stream may contain an SST. To analyze the
code represented by this SST, C A RET provides SST Reusable
Components, such as visitors for traversing the tree and a points-
to analysis for reasoning about the code. Section IV describes
SSTs, how we use them to capture fine-grained source code
changes, and the tooling we built to analyze them.

Overall, C A RET provides a stable basis for research on and
with a fine-grained in-IDE development history. It can be
used to analyze new data collected by installing our in-IDE
interaction tracker, FEEDBAG++, in the researcher’s chosen setting
or by using our pre-collected dataset of in-IDE development
events. We discuss this dataset in Section V as part of the
applications we already used our infrastructure for.

III. CAPTURING ENRICHED EVENT STREAMS

Our goal is to capture developers’ interactions with the
IDE and to combine this data with richer and more detailed
context information. This allows getting more insights into
the development process and facilitating the reasoning about
captured code snapshots. In this section, we discuss how we
capture enriched event streams from within the IDE. We also
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Figure 2: Enriched Event Stream

describe the events we currently capture and how additional
events and context information can be added in the future.

A. Representation and In-IDE Tracker

Figure 2 shows how we represent enriched event streams,
which consists of two levels: process and context. On the
process level, we capture a stream of individual events with
basic information, such as the event’s type (e.g., code change
or save), its invocation time, and its duration. On the context
level, we store specific data depending on the event type. For
example, save events store the name of the file that was saved
and the way in which the save action was invoked (e.g., by
short cut or by menu selection).

To capture enriched event streams, we built FEEDBAG++

for VISUAL STUDIO on top of our previously published tool,
FEEDBAG [2], [3], which only captured command invocations.
FEEDBAG++ is a plugin for RESHARPER, a very common extension
to VISUAL STUDIO that adds many convenient development tools
and analyses. For simplicity, when we talk about VISUAL STUDIO in
the rest of the paper, we always mean the combination of VISUAL

STUDIO and RESHARPER, because FEEDBAG++ needs RESHARPER to
work. FEEDBAG++ is available for installation from the RESHARPER

extension gallery, such that anyone can use it.
Once installed, FEEDBAG++ runs transparently in the back-

ground and requires no interaction. It monitors developers’
actions and captures the following types of enriched events:
command invocations, mouse movements and clicks, ctrl-click
navigations, usages of the search tool, changes (e.g., edit and
code completion), document actions (e.g., create, open, and
save), project builds, test runs, debugger usage, version-control
usage, IDE-state changes (e.g., startup and quit), window
events (e.g., move), and system events (e.g., screen lock and
suspension).

For most events, the context captures the target on which
the event was invoked, such as the name of the file that was
saved, information about projects that were built, or the Id of
the command that was invoked. For change events, the context
also captures a code snapshot of the file-under-edit. These code
snapshots are not simply stored as plain text, as this would
make them very hard to analyze outside of the IDE environment.
Instead, we use a specialized intermediate representation
called Simplified Syntax Trees (SSTs) that preserves typing
information and stores additional information, such as the edit
location and details about code-completion interaction. We
provide detailed information about SSTs in Section IV.

The event data is collected locally and developers are asked
to regularly upload the collected data to a server, whose URL
they can configure themselves. After the upload, our tooling
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Figure 3: Workflow of Event Generation in FEEDBAG++

consolidates uploads from the same developer and cleans up
noisy data, e.g., by removing duplicated uploads.

FEEDBAG++ and all post-processing tools are open source and
can be used to collect data in controlled experiments, field
studies, or data collections for specific target populations.

B. Extending the Enriched Event Stream
While we already capture a wide range of events from the

IDE, researchers may be interested in additional events or
additional context data. To explain how this can be done, we
illustrate the workflow of creating and managing the event
stream in FEEDBAG++ in Figure 3. This workflow consists of
two parts: the instrumentation and the event processing.

The instrumentation of the IDE represents the part in which
the actual events are captured. VISUAL STUDIO and RESHARPER

both offer APIs that can be used to access information about
the current state of the IDE. The researcher performing the
instrumentation needs to identify the information she is looking
for and, accordingly, use the relevant parts of the APIs.

To allow FEEDBAG++ to receive and process any collected data
from the instrumentation, it is necessary to implement a new
generator that is automatically instantiated every time VISUAL

STUDIO is launched. The first step is to register the generator
as a listener for relevant activities (e.g., menu clicks) and
react accordingly when they occur. As a registered listener, the
generator can use the APIs of VISUAL STUDIO, RESHARPER, or any
other API available in VISUAL STUDIO’s runtime that offers relevant
information. In a final step, an event has to be initialized that
can store the captured information. The event is then published
on the Event Bus for further processing.

The event processing part of FEEDBAG++ is responsible for
the machine-local management of the enriched event stream.
More specifically, it is responsible for the local storage and the
upload of the collected event stream. The interface from the
instrumentation to the event processing is the event bus. The
local event manager consumes all events that are published on
this bus. Each incoming event is serialized to JSON and stored
in files on the local drive of the developer’s machine. The
local event manager also provides the interface for FEEDBAG++’s
end-user, which allows users to review the collected data and
regularly reminds them to upload it.

While collecting new data requires updating the instrumen-
tation, there is no need to update the event processing part to
handle newly created event types in the enriched event stream,
as long as they extend the event base class.



Given the above workflow and design, the event stream can
be extended in two ways: First, it is possible to add new event
types that might define their own specific context. Second, the
context of existing event types can be extended with additional
specific information. To illustrate both ways, we discuss how
we added an extension to FEEDBAG++ that captures navigation
information. More specifically, how we extended FEEDBAG++

to capture data about when developers use control-click to
navigate the code base.

The first step was to create a new event type and adding
a generator that intercepts any control-clicks in the editor
window. Each time such a navigation takes place, the generator
instantiates an event, fills in the basic information (e.g., the
time), and publishes the event. Capturing this event type
allowed us to analyze how often this kind of navigation is used
in practice. We soon realized that, to make sense of the data, we
needed more context information about the navigation. Since
we already had the event type in place, we addressed this by
extending the existing generator to capture the additional data,
namely the fully-qualified name of both the current location
and the target location, and by adding this specific context
information to the event type.

IV. CAPTURING FINE-GRAINED SOURCE CODE CHANGES

As part of our enriched event stream, we want to capture
fine-grained code evolution to enable the answering of many
related research questions. A simple textual snapshot of a
source code file poses many analysis challenges. It is necessary
to reconstruct the project environment to make it compile and,
for example, dependencies or project specific configuration files
might be missing. Therefore, we designed a new intermediate
representation (IR) for source code called Simplified Syntax
Trees (SSTs) to facilitate static analyses and the creation of
source-based tools. We first describe five design considerations
for such a representation (and the tooling around it) and then
present the implementation. The design considerations are
motivated by needs of existing source-based research techniques
and by potential uses we foresee. The last part discusses our
implemented transformation for C# code.

A. Design Considerations
(DC1) Resolve typing information: Similar to analyzing

source code from commit history, current techniques for
creating in-IDE source code snapshots have the problem
of not capturing typing information. This is because only
text-based snapshots of the code are captured. The typing
information can be reconstructed if the sources can be compiled.
However, compiling a project is a hard task as projects include
dependencies that might be unavailable or because they rely on
a project-specific build environment. We, therefore, advocate
that captured source-code snapshots should contain resolved
typing information to facilitate analyses done on top of them
and to save their users the effort of resolving dependencies.

(DC2) Capture the names and versions of dependencies: It
is important to consider the used libraries and frameworks when
studying how developers write code. Such libraries often get

upgraded to a newer version or exchanged with an alternative
better suited for the task. To detect this kind of change, it is
crucial to capture the list of included dependencies as well as
changes to how they are used in the code.

Modern provisioning frameworks such as NUGET, MAVEN, or
P2 make it easy to identify the required dependencies and
to extract the respective name and version. However, simply
storing the dependencies of a project (e.g., in a VCS) does
not help in understanding the impact of different versions for
recommending the right code (changes) to the developer. While
the change of project dependencies suggests a library migration,
it does not indicate anything about the required code changes.

We argue that the library references should be stored together
with the typing information in a code snapshot to make the
relationship between types and libraries explicit. In this way,
it is possible to identify code elements that point to the old
framework and, in a later snapshot, code elements that point
to the new framework.

(DC3) Contain edit location: To get a holistic view on
source-code changes, they have to be aligned with tool
interactions in the IDE. For example, consider the case in
which subsequent snapshots indicate a variable renaming. To
study the evolution, it is interesting to distinguish cases in
which the developer used a refactoring tool from cases in
which the renaming was done manually. Another example is
understanding how developers use a code-recommender system
that proposes the next method to invoke, which was one of our
early motivations for this work. Enriched event streams contain
this information, but in both cases, it would be very useful to
know the location in the source code in which the tool was
invoked, a piece of information that is readily available in the
IDE. We argue that a code representation should go beyond the
syntactical content of a source file and also include information
that makes it easy to align source code and the process.

(DC4) Handle incomplete code: As opposed to code in
VCSs, in-IDE code snapshots suffer from the problem that
source code under edit is often incomplete or contains invalid
parts. Thus, when creating the representation of the code
snapshot, these parts must be handled. We argue that this
burden should not be left to the researchers who only work
with the snapshot, because this issue is easier to solve in-IDE,
where all surrounding information is still available.

(DC5) Capture stability indicators for changes: One poten-
tial problem with capturing code snapshots from the IDE is that
the granularity might be too fine to find meaningful patterns,
because the changes are no longer grouped. For example,
assume the developer continues changing the code for one
minute until it gets to a stable state and then she invokes the
save command. The snapshots taken during this minute might
have a different flavor than the one taken at the save trigger,
since the latter might indicate slightly more stable code. We
argue that having some basic versioning indicators such as
on change, on save, or on commit correlated with the code
snapshot can allow different groupings of snapshots and the
analysis of the data at different levels of granularity, depending
on the intention and heuristics used.



B. Simplified Syntax Trees (SSTs)

It is not possible to simply store all available information
about the development context in each code snapshot, because
this would include all sources, dependencies, and configuration
files of the project. In addition, directly analyzing source code
has certain challenges, such as implicit information in the
Abstract Syntax Tree (AST), e.g., implicit this references, or
arbitrary complexity of the syntax tree (e.g., nesting or chaining
of expressions). To make a data collection of such fine-grained
changes feasible and to ease future analyses built on top of it,
we design a new intermediate representation for the snapshots.

There are two main styles of representing source code for
later static analyses that we considered: ASTs and 3-address
representations. In the former, the representation is close to
source code and best reflects the view of the developer. In the
latter, it is easier to write static analyses, because the complexity
of the language is reduced to simple register operations and
jumps with labels. We decided to combine the advantages of
both styles with the following goals in mind:
● Improve the analyzability, when compared to source code.
● Preserve control structures (stay close to source code).
● Avoid implicit information (make everything explicit).
As a result, we defined SSTs, a new tree-based intermediate
representation for source code. An SST is a tree-based structure
that is very close to the AST of the original source code.
It represents the current type under edit and still contains
most syntactic elements found in the source code, such as
declarations, invocations, or control structures. To reduce
the size of the representation, there was a tradeoff between
capturing everything and having only the commonly used
information. We decided to leave out some information, such
as white space and comments, that is typically not used when
reasoning about the source code.

In addition to the syntactical information, we also store
information from the type system: references and hierarchy.

References. Each reference to the language model (e.g., a
return type of a method) is stored in a fully-qualified form
that, in addition to the namespace-qualified type, also contains
the originating framework and its version (the assembly in C#
terminology). An example of such an assembly-qualified name
is “a.b.C, foo.dll, 1.0”, where a.b.C is the type’s
fully-qualified name, foo.dll is the assembly it belongs
to (e.g., a library or framework), and 1.0 is the version of
the assembly. Project-local types do not have a version, so we
simply omit it, as in “x.y.Z, MyProject”. The versioning
information may be used to study the evolving use of certain
libraries and addresses design considerations DC1 and DC2.

The naming scheme also captures generics. For example,
“A‘1[[T→B, b.dll,1.0]], a.dll,2.0” points to a
generic type A (from “a.dll,2.0”) with one (‘1) generic
parameter T that is bound to B (from “b.dll,1.0”).

When transforming source code to SSTs, we replace every
explicit or implicit type reference by the corresponding fully-
qualified name. This means that we also store the respective

fully-qualified names for the declaring type, any parameter
types, and the value or return type of every reference expression.

Hierarchy. We store information from the type system about
the edited type, i.e., the type hierarchy of the type under edit.
We also store information about all its method declarations,
i.e., which method declarations are entry points, which ones
override an existing declaration, or which implement an
interface. Capturing this information is motivated by the design
consideration DC1.

One of the things we were interested in early on is
understanding how developers use code completion tools.
Therefore, we added the new expression type in addition to the
regular code elements defined in the C# language. We use this
expression type as a marker of the edit location and to store
information about code completion events in this expression,
which addresses design consideration DC3. For example, we
store the object reference on which the code completion was
triggered. When an SST is created without having the developer
edit the file (e.g., by transforming a piece of code outside of
the IDE), this additional element is never included, because
no interaction takes place.

Including this information as a language element ensures
consistent source code transformations both inside and outside
of the IDE and saves the effort of maintaining two variants.
For example, this makes it easy to integrate any recommender
system that relies on source code into the IDE, because it can
count on receiving the same input whether it is working on
in-IDE source code or source code from repositories.

The remaining design considerations are not addressed by
the representation, but by the tools we have built around it.
Design consideration DC4 (“incomplete code”) is addressed by
building a resilient transformation. Design consideration DC5
(“versioning indicators”) is addressed by capturing process
information about saves and version control in addition to the
change events.

We note that we have previously published a data paper that
made use of SSTs for gathering a dataset of C# code [51].
However, the data paper focused on the creation of the dataset,
its representation, and potential use cases and did not focus
on the in-IDE snapshots or process information. We did not
elaborate the requirements for the representation before; the
data paper only discusses the SST grammar.

C. C# Transformation
We implemented a transformation for C# that transforms

source code to SSTs. It is written in C# and is based on the
RESHARPER framework [56]. The transformation can generate
SSTs from the source code of VISUAL STUDIO solutions in a batch
job. The same transformation is available as a service for
RESHARPER plugins that run in VISUAL STUDIO, which, for example,
allows FEEDBAG++ [13] to capture the source code under edit
from VISUAL STUDIO’s editor. Since source code in an editor
may be non-compilable, the transformation is resilient against
missing statements or incorrect expressions. It processes all
information that ReSharper’s parser is able to retrieve from
the code (see DC4).



1 o.A();
2

3 if (o.IsX()) {
4

5

6 o.B(C()).D();
7 var e = E();
8 e.t2
9 }

(a) Original C# Source Code

1 o.A();
2 bool $0 = o.IsX();
3 if ($0) {
4 int $2 = this.C();
5 string $1 = o.B($2);
6 $1.D();
7 int e = this.E();
8 completion(e, t)
9 }

(b) C A RET’s IR (SST)

Figure 4: Transformation of a Source Code Example

The transformation is influenced by two design decisions:
● Simplify the representation.
● Unify over alternative styles of writing.
We implemented several transformation steps to follow these
principles. The transformation simplifies nested expressions
that are more complex than literals or reference expressions by
creating artificial intermediate variables to which the formerly
nested expressions are assigned. The transformation removes
syntactic sugar from the source code and replaces it with the de-
sugared variant. For example, C# allows to initialize properties
directly as part of a constructor call. Our transformation reduces
this initialization to a constructor call and assignments.

An example of our transformation is provided in Figure 4.
Figure 4a shows a piece of C# code and Figure 4b shows
the corresponding SST (when rendered to a source-code like
representation that omits details like the fully-qualified type
references). The latter makes implicit information visible. For
example, the var keyword on Line 7 of the original code
is replaced by a type reference in the SST and all this
references are explicitly named. Furthermore, the SST unifies
over alternative styles of writing. For example, the nested and
chained calls in Line 6 of the original source code are assigned
to intermediate variables in Lines 4 to 6 in the SST.

D. C A RET’s SST Tools
As part of C A RET, we offer various tools that enable other

researchers to work with SSTs. Figure 5 shows these tools.
SSTs are created by the C# transformation component that was
presented in the previous section. The component can be used
to capture SSTs from files under edit in Visual Studio or to
transform a given C# solution to SSTs. It is implemented in C#
and is part of FEEDBAG++. However, since many research tools
are written in Java, we provide our reusable tooling for the
analysis and manipulation of SSTs in Java. In the following,
we will describe these components.

Visitor: SSTs implement the visitor pattern [14]. The goal of
the pattern is to separate an algorithm from the data structure
on which it operates. This means that new static analyses
can be implemented on top of SSTs without altering the data
structure. The visitor pattern also makes traversing the SST
tree structure very convenient.

Inlining: It is a common guideline and a good coding
practice to keep method bodies short and to identify coherent
building blocks that can be outsourced to a helper function [32].

C#

Source Code Simplified Syntax Tree SST Transformation

Analysis /
Manipulation

    Loop Normalization
    Points-to Analysis

    Inlining
    Visitor

C# Transformation

Creation

Figure 5: Reusable Tools for Simplified Syntax Trees

Unfortunately, from the point of view of a researcher that tries
to identify related method calls, this makes it harder to write a
static analysis. We provide an inlining component that inlines
calls to private helper methods (non-entrypoints) into the calling
method; only the entry points of an SST remain in the end.
This allows restricting a static analysis to an intra-procedural
scope, but still get some benefits of inter-procedural analyses.

Points-to Analysis: When studying source code, it is often
the case that a researcher is interested in the objects that are
referenced or addressed in a specific statement. We provide
points-to analyses for SSTs that can be used to identify the
abstract location to which variable references point to during
the execution of a program. We have four implementations: two
simple implementations that are based on types or reference
names, a Steensgard-style unification analysis [63], and an
implementation that is based on constraint inclusion [58].

Loop Normalization: Many code elements can be used to
express a loop in a program, e.g., while, for, foreach etc.
Depending on their preference or knowledge of the program-
ming language, different developers might select different loop
constructs when implementing the same piece of code. This
makes it harder, for example, to find patterns in the resulting
code, because the code structure is less similar. We provide a
reusable component that normalizes all loop constructs into a
while loop, with the goal of unifying source code written by
different developers.

V. REAL APPLICATIONS OF FEEDBAG++ AND C A RET

To demonstrate the usefulness of the tools and data structures
we built, we describe three research directions that we already
used them in. We also indicate potential future applications.

A. Collecting In-IDE Development Events
To make use of C A RET, it is necessary to capture data that

can be analyzed. We published FEEDBAG++ in the official plugin
repository of RESHARPER [13]. We advertised the project in our
social media channels and at various conferences. Our invitation
to use C A RET was open to any interested developer, which
means we did not target a specific population of users. However,
we added a voluntary questionnaire to learn about participants’
backgrounds. Our assumption is that a high number of random
participants and long observation times provide a rich data set
with a variety of projects and participant backgrounds.

So far, we have received 5.6 millions events that have been
uploaded by 58 developers. Out of these developers, 30 come
from industry, two are researchers, four are students, and six
are hobby programmers. Sixteen participants did not provide
the (optional) profile information. The submissions cover 915
days and span six months, but not all developers participated



the whole time. On average, each developer provided ∼ 97,000
events (median ∼ 42,000) that have been collected over 15.8
days (median 9.0) The dataset and more detailed statistics are
available on our artifact page [4] and can be used by others.

Note that we previously described a different interaction
dataset [3] that we collected using FEEDBAG [2], the predecessor
of FEEDBAG++. This previous dataset is different from the one
we describe here in the following ways: First, it was created
with FEEDBAG, which did not yet capture enriched event streams,
the main contribution of this paper. Second, it was based on a
deployment with an industry partner, which prevented us from
publishing the dataset.

Other researchers can easily reuse FEEDBAG++ and C A RET.
The server to which the data is uploaded can be configured in
the tool. As FEEDBAG++ and the optional server that aggregates
the uploads are open-source, researchers can extend FEEDBAG++,
if necessary, and collect their own dataset.

It can be used in different settings. For example, we decided
to collect the reference dataset in a field-study-like setup. In
a more controlled setup, FEEDBAG++ could also be used to
collect data from the subjects and then be complemented with
qualitative data collected during or after the experiment.

B. Learning How Developers Test
Previous work by Beller et al. [6] analyzed how Java

developers test. They applied WATCHDOG in the Java IDEs ECLIPSE

and INTELLIJ. The enriched event streams captured by FEEDBAG++

provide an opportunity to extend their work to VISUAL STUDIO.
The experiments in their paper were based on intervals

of several activities (i.e., IDE open, active periods of the
developer, reading and typing in a file, test execution). By
default, FEEDBAG++ captures any commands initiated by the
developer so all of these activities were already included in our
event stream. However, for test executions, we only captured
that an execution was initiated, but no further details about
the individual tests. We added an additional generator to our
platform that instruments the test runner of RESHARPER to fill
this gap. It captures the names of each executed test, as well
as the duration and the result of the run. We then designed a
test event data structure to store the relevant information.

A technical difference between both tools is that we capture
(and upload) a fine-grained event stream, whereas WATCHDOG lifts
this stream to intervals on the client side and only uploads the
resulting intervals. An interval captures when and for how long
an activity took place. We implemented an offline conversion in
C A RET from enriched event streams to the intervals described
in their paper to make our enriched event stream compatible
with WATCHDOG. The original authors confirmed that the created
intervals are sufficient to run the experiments in their pipeline.

While this project is still an on-going collaboration with
the WATCHDOG team, it provides an indication of the research
possibilities that enriched event streams open up. It shows that
having FEEDBAG++ made it easy to extend WATCHDOG to a new
IDE. It also shows that enriched event streams already contain
a wide range of context information and that new generators
can be added to capture more.

C. Creating Static Analyses
One of the core principles we followed when designing SSTs

was to allow the ability of building extensive static analyses
on top of them and to support some of these re-occurring
analysis tasks with reusable components. As an early use
case, we re-implemented the static analysis of a method call
recommendation system we had previously built [53], which
was built for Java Bytecode using WALA [66]. We replicated the
recommender for C# with the goal of checking if SSTs contain
all required information for this specific static analysis.

The recommender approach relies on object usages as input,
a data structure that stores all the context information relating to
a single object in the current enclosing method. For example, it
stores the surrounding method definition as the method context,
how the object was initialized (e.g., passed as a parameter or
by a constructor call), which methods were invoked on the
object, and the method invocations to which the object was
passed to as a parameter. Objects are also tracked into private
helper methods to make the method context more meaningful.

The revised static analysis was implemented as a visitor
on SSTs. We made use of the points-to analysis provided by
C A RET to identify potential object instances and collected the
required information while traversing the syntax tree.

During the design of SSTs, we considered other source-based
recommender systems such as other method call recommenders
(i.e., [1], [7], [22], [34], [55], [68]), snippet recommender (i.e.,
[23], [31], [47], [48], [64]), and tools for code search (i.e.,
[24], [25], [41], [69]), documentation (i.e., [33], [36], [37],
[70]), and anomaly detection (i.e., [30], [40], [50]). We have
documented these requirements in an online appendix that is
available on the artifact page [4] such that other researchers can
check the data captured in SSTs and decide if it is applicable
to their research questions.

D. Designing More-Realistic Evaluations
Since a realistic ground truth for evaluating a code-

recommendation system is usually not readily available, eval-
uations of such systems typically rely on creating artificial
queries from stable code found in VCSs (e.g., by removing
one or more method calls). In the dataset we created, C A RET

provided us with a fine-grained change history of source code
from several developers. This allowed us to understand how the
source code evolved over time and which method completions
helped the developer to reach the final state. Having this kind
of information in an easily processable way allowed us to use
it as the ground truth to evaluate a method-call recommender
we built before (see Section V-C) and understand how artificial
evaluations compare with more realistic settings [52]. Both
the final code state as well as the intermediate states to create
queries from where taken from the enriched event stream.

We compared an artificial evaluation that would be conducted
if only the final state would be available with a realistic
evaluation that is based on the fine-grained source code
evolution. To train the recommender, we needed to collect
large amounts of existing API usages. Therefore, we extracted
a dataset of SSTs from 360 GitHub repositories containing



C# source code [51]. The intention was to complement the
interaction data and to select projects that contain examples of
the same APIs that appear in the collected interaction data. The
transformation from C# code to SSTs was done with C A RET’s
C# transformation introduced in Section IV-C.

Our experiments showed that evolving code contains infor-
mation that is changed or removed before the source code is
committed. If this evolving context is included in a realistic
evaluation, it has a big impact on the recommendation system.
We concluded that an evaluation that ignores the fine-grained
history would report a much higher quality for the recommender
than what would be achieved in practice [52].

E. Discussion
The above applications demonstrate the practical use of the

enriched event stream and SSTs, its intermediate representation
for source code snapshots. We have shown the potential
and the applicability of the reusable components, as well as
the usefulness of the fine-grained change history, including
the additional information stored in the SST, i.e., the edit
location and the typing information. We also demonstrated the
extensibility of the generator framework for the event stream.

These directions only represent our experience and the
applications we have used C A RET for so far. However, the
availability of the novel event stream of fine-grained developer
actions opens up new research directions. We foresee many
further uses of the current event stream, such as learning
more about debugging activities of developers, analyzing
navigation behavior, or understanding more specific details
of code evolution. Even though we only replicated the static
analysis of a single recommendation engine, we also foresee
that SSTs are applicable for various recommendation systems
in software engineering, such as snippet recommenders or code
search. The fine-grained evolution of the source code might
also be a valuable source for the evaluation of such systems.

We encourage other researchers to contribute generators
to FEEDBAG++ to further enrich the event stream with more
specialized event types. Our continuous advertising leads to
an increasing user base and a growing dataset that enables
investigations of further research questions at a larger scale.

VI. LIMITATIONS OF C A RET

Empirical research on developers is a complex topic. FEED-

BAG++ focuses on capturing data from the developer while
working in-IDE. Depending on the research question, a more
holistic picture of the development process is required. For
example, studies in psychology or applied social studies might
need information about the sentiment of the developer or any
utterances they express in the experiment. Another example
are studies that involve out-of-IDE tools (e.g., the command
line or websites) or data (e.g., biometric information). We do
not currently capture such data, but we designed FEEDBAG++ to
be extensible, such that any event source could potentially be
combined with the in-IDE event stream

FEEDBAG++ and the SST transformation are currently only
available for VISUAL STUDIO and the C# programming language.

However, the concepts presented in this paper are generic
enough to be applied to other programming languages and
respective IDEs. The tooling provided in C A RET is language
and IDE independent, offering reuse opportunities for studies
across language and IDE boundaries.

Regarding the in-IDE collection of developer activities, we
group the current limitations of our infrastructure into three
categories: limitations of the process representation, the SST
representation, and the SST transformation.

Process: We introduced two abstraction levels that describe
the change process in an IDE: an event stream that describes
the development process and an intermediate representation for
code snapshots. While both abstraction levels are general and
extensible for future requirements, it might be that a concep-
tually different style of representing the historic information
is required for a specific approach, or that we abstract certain
needed information. For example, we capture the events on
change, on save, and on commit in our enriched event stream
to indicate different versioning information. However, some
approaches also use the actual commit message to derive further
information, for example to classify the change type [54]. Since
commit messages were not central to our research, we do not
currently support them. However, they can be added in the
future by extending the corresponding VCS generator.

Simplified Syntax Trees: SSTs represent source code in
a normalized form by avoiding the nesting or chaining of
expressions. This design decision was driven by the desire to
simplify analysis tasks. At the same time, this design makes
it harder for approaches that work with source code as plain
text. We mark the artificial intermediate variables, so inverting
the normalization is possible. In future work, we will consider
providing the normalization as a reusable component to better
separate the snapshot creation from the SST transformation.

SSTs store typing information, but it is impossible to store the
entire language model in every snapshot. Therefore, we restrict
the captured information to the immediately relevant parts, even
though we might miss information that is required by a specific
approach. For example, a snapshot does not include pointers
to all methods that are overridden by a method declaration,
but only to the super method and to the first declaration that
introduced the specific signature. We argue that the effect of this
tradeoff is rather small. The most valuable information from the
type system are references to reusable APIs, whereas project-
specific references do not carry any reusable information. These
references to public APIs can still be resolved after the fact. For
example, by building an index of typing information extracted
from published libraries and frameworks. Since SSTs contain
fully-qualified type information, it is possible to query this
index for missing information. This still means that project-
specific information is lost, if the project is not published as
open-source. However, since researchers are usually interested
in information regarding reusable APIs, this solution presents
a reasonable tradeoff.

Even though our abstraction leaves out information from
the source code, e.g., comments or attributes, this does not



limit the generality of the approach. Adding support for such
information is a matter of extending the SST grammar and
spending some engineering effort to extend the transformation.

Transformation: In its current form, the transformation of C#
source code changes the semantics of short-circuit evaluation.
This is because all sub expressions in a boolean expression
are assigned to intermediate variables and, therefore, always
evaluated. We acknowledge that this transformation is unsound,
but it only affects specific analyses that rely on this information
such as data-flow analyses that detect missing null checks, for
example. In addition, this limitation can be easily addressed by
spending additional engineering effort and does not represent
a limitation of concept or design.

VII. RELATED WORK

In this section, we discuss four areas that are closely related
to the concepts presented in this paper: (A) intermediate
representations of programs, (B) platforms that support re-
usable analyses of source code, (C) tools that collect snapshots
of code, and (D) in-IDE interaction trackers.

We would also like to note that there is a large research
direction that integrates information from additional data
sources, such as mailing lists and issue trackers (e.g., [9],
[15], [19]), to analyze software evolution or software metrics.
While the focus of C A RET is on source code and process
information, such line of work is orthogonal to ours. Another
interesting line of research captures biometric information from
the developer, e.g., which code fragments they looked at [57].
Such information could be used to further enrich our stream of
events and SSTs. Opportunities and challenges of integrating
both directions into C A RET should be investigated in the future.

A. Intermediate Representations

Various IRs of source code have been proposed to facilitate
different kinds of analyses. We subsequently discuss these IRs
and compare them to SSTs.

Gomez et al. [17] introduced RING, a unified meta model
for SMALLTALK that provides extensions to model changes and
history. Their model resembles a simple AST-like representation
that does not resolve typing information, while our SST
representation captures fully-qualified type identifiers.

Necula et al. [45] introduced the C Intermediate Language
(CIL) as an IR for C code. Similar to ours, their transformation
from C to CIL resolves ambiguities in the source language and
ensures unique type names by moving all type declarations to
the top level and disambiguating their names. Contrary to their
approach, our transformation also deals with types declared
external to the program being transformed.

Proteus [65] converts source code into an IR called Literal-
Layout AST (LL-AST). The approach focuses on the problem
of preserving document layout, i.e., comments and formatting,
in automated code transformations. It deals with many C/C++
specific problems, such as preprocessors and macros. In contrast
to LL-ASTs, SSTs contain resolved type information, but
exclude comments and formatting. We argue that, while both

need to be preserved when modifying source code, they are
mostly irrelevant to investigations on how developers work.

JavaML [5] is an XML-based IR for source code. The
transformation to JavaML inserts tags around source elements
to identify the element’s nature, e.g., whether it is a keyword,
a type name, or an identifier. This allows analysis and trans-
formation of source code using standard XML tools, such as
XQuery or LINQ, instead of custom programmatic processing
of ASTs. srcML [8] is an infrastructure for the exploration,
analysis, and manipulation of source code. It generalizes the
idea of JavaML by abstracting over programming languages.
The format and transformation handles C, Cpp, C++, C#, and
Java. Similar to JavaML, the transformation annotates source
elements by XML tags, but leaves the source code otherwise
unchanged. A big difference between our IR and both JavaML
and srcML is that we provide resolved type information to
facilitate analysis tasks.

Jimple [29] is a typed three-address representation that was
developed as part of the SOOT framework to simplify control-
and data-flow analyses of JVM Bytecode. Generating a Jimple
representation for a Java class requires its .class file, i.e., it
must be compilable. In contrast, our transformation deals with
partially non-compilable source code, as often encountered
when taking snapshots of the IDE editor. SSTs are also closer
to source code, which allows analyses to present results in a
human-readable form, and makes it independent of the JVM.

Alitheia Core [18], [19] provides a language-agnostic AST-
like representation of the source code, which is neither
normalized nor contains resolved type information. The SOFAS
platform [15] provides a FAMIX meta model of the source
code. The model does not provide resolved type information.

In addition to the above points, SSTs encode further
information that none of the IRs above capture: First, they
encode trigger points of code completion and edit locations.
This information is useful for understanding how developers
use code recommender systems, how code evolves, and for
realistic evaluations of source-based tools. Second, our type
information contains API versions, which is useful both from
the perspective of studying API use as well as code evolution.

B. Reusable Program Analysis Platforms
RASCAL [28] is a DSL to write analyses and transformations

of source code. The core approach is language agnostic,
with language-specific constructs being provided as reusable
libraries. The language environment provides resolved type
information when working directly on the abstract syntax tree.
Therefore, it needs compilable sources.

The BOA project [12] provides a domain-specific language
and mining infrastructure for analyzing large-scale repositories,
such as all Java projects from SourceForge and GitHub. BOA
users write their own analyses to query pre-collected datasets.
The environment and language are, however, unsuitable for
more advanced static source-code analyses, such as pointer
analysis. Additionally, type resolution is not supported.

Static analysis frameworks such as WALA [66], SOOT [61], and
OPAL [49] provide reusable modules for common static analysis



tasks. They work on low-level IRs, such as Java Bytecode
or Jimple. Since we cannot use these formats as our IR (see
Section VII-A), we cannot directly use any of these frameworks.
One could, however, convert SSTs to these formats and make
use of the rich set of static analyses provided by the frameworks
on top of C A RET.

C. Snapshots Collectors
Several tools exist that collect fine-grained source code

snapshots from the IDE. The closest work to ours is the
work by Dias et al. [11]. They introduce EPICEA, which
captures code changes of the developers on a structural level
together with process information that describes refactorings,
test runs, and version control. This makes it quite similar
to FEEDBAG++, but EPICEA only captures actions related to
source code whereas we capture general interactions. Another
difference is that we capture saves, because we consider them
as additional versioning indicators. EPICEA stores source code
changes incrementally in a log, using the RING format. This is
different to SSTs in two regards. First, method bodies are only
stored as text. They can be parsed to an AST later, but do
not contain resolved type information. Second, information is
captured incrementally, e.g., in case of a name refactoring, they
only store the specific information (i.e., the old and the new
name), whereas we would store two complete SST snapshots.
While the incremental approach is more convenient for analyses
of code evolution, it complicates static analyses that typically
require complete pieces of code. In addition, their model makes
it necessary to instrument every individual refactoring command
to capture the specific information; in our case, we always
capture complete snapshots and all invoked commands, so it
is possible to extract specific information after the fact.

Schneider et al. [59] introduce an Eclipse plugin that
maintains a shadow repository, i.e., a CVS repository to which
the user’s in-IDE edits are automatically committed. This
evolution history was used, together with information from
other sources, to investigate team collaboration.

MARMOSET [62] uses an Eclipse plugin to automatically commit
a snapshot of the current work to a VCS on each save. It was
used to analyze the evolution of student projects in a software
engineering course. Marmoset’s snapshots are more course-
grained than ours, being captured only at the level of saves.

Negara et al. [46] use the Eclipse plugin CODINGTRACKER to
track AST operations such as add, delete, and update. From
this data, they recover the fine-grained evolution of source code
under edit, minus the formatting. They use this information to
compute how much of the change history of a project is not
captured by regular VCS usage.

All these approaches have in common that they store plain
source code. In order to retrieve full typing information
from this data, we would need to retrospectively resolve the
dependencies of the captured code, which cannot generally be
automated. Capturing SSTs directly within the IDE solves this
problem, because the developer already sets up the necessary
environment for the respective project. Furthermore, none of
the approaches captures development process events.

D. Development Event Trackers
Several interaction trackers exist for different IDEs. To the

best of our knowledge, they all capture only a subset of the
development events we consider in this work and do not capture
code snapshots. MYLYN [42] tracks development events in ECLIPSE

to identify the project and IDE resources relevant to the current
task. DFLOW [38] captures development events in PHARO, an IDE
for Smalltalk, to identify high-level activities developers spend
their time on. BLAZE [60] tracks which commands a developer
invokes in VISUAL STUDIO. Unfortunately, neither the tool nor
the dataset is publicly available. WATCHDOG [6] captures testing-
related development events and which files developers read or
edit in ECLIPSE, but aggregates the events on the client already.

VIII. SUMMARY

Previous work on developer behavior either studies the
artifacts that are created during the development process after
the fact or observes developers while using an IDE. In this
paper, we combine the advantages of both and propose enriched
event streams, a new data representation that can store both
process information and fine-grained context information, in-
cluding source code snapshots. We propose a new intermediate
representation for such snapshots, called Simplified Syntax
Trees (SSTs), that solves several challenges that occur when
analyzing plain source code. For example, it is unnecessary to
compile SSTs, because they already contain type information.

We created FEEDBAG++, an interaction tracker for Visual
Studio that captures an enriched event stream and built C A RET,
a platform that provides reusable components to support
researchers in working with the enriched events and SSTs.
We deployed the tracker with 58 developers to record their
actions in the IDE and share the collected dataset. We described
several research questions and directions that we were able to
explore using C A RET and the rich historic information captured
in our dataset. Having enriched event streams paves the road for
novel studies on developer behavior. We encourage researchers
to use and extend our tools and datasets.
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